skip to main content


Search for: All records

Creators/Authors contains: "Jaison, Donna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This Research Work-In-Progress reports the implementation of an Object Assembly Test for sketching skills in an undergraduate mechanical engineering graphics course. Sketching is essential for generating and refining ideas, and for communication among team members. Design thinking is supported through sketching as a means of translating between internal and external representations, and creating shared representations of collaborative thinking. While many spatial tests exist in engineering education, these tests have not directly used sketching or tested sketching skill. The Object Assembly Test is used to evaluate sketching skills on 3-dimensional mental imagery and mental rotation tasks in 1- and 2-point perspective. We describe revisions to the Object Assembly Test skills and grading rubric since its pilot test, and implement the test in an undergraduate mechanical engineering course for further validation. We summarize inter-rater reliability for each sketching exercise and for each grading metric for a sample of sketches, with discussion of score use and interpretation. 
    more » « less
  2. Sketching is a valuable skill in engineering for representing information, developing design ideas, and communicating technical and abstract information. It is an important means of developing spatial abilities which are predictive of success in STEM fields. While existing spatial ability tests are predictive of engineering visualization skills, they do not allow students to develop drawing skills through spatial exercises. The Object Assembly Sketching test examines sketching skills with object assembly tasks using mental imagery and mental rotation. This study focuses on the development and pilot testing of a new sketching skills test using object assembly exercises. We piloted the test in two sections of an undergraduate mechanical engineering design course. Inter-rater reliability of two raters scoring students sketches on eight criteria was acceptable across exercises, but low across criteria. Students scored highest on Representation Accuracy, Scale, and Symmetry, and exhibited complex understanding of perspective sketching. We intend to revise the rubric to score for aesthetics and make instructions more precise. 
    more » « less
  3. In this Lessons Learned paper, we explore the themes uncovered from a series of facilitated faculty discussions on moving their course back to face to face teaching after the switch to online. The Institute at Anonymous University administrates over 100 faculty whose primary department appointments and teaching assignments are in either engineering or education. Over the last two years, the Institute hosted numerous conversations for faculty members to share experiences, research, and assessments of teaching successes and concerns as they changed instructional modalities, both with the initial move online and the subsequent move back face to face. From these conversations, faculty agree that some things during the move to online instruction, such as office hours, video archives of lectures, and some activities in break-out rooms appear to enhance student learning. Yet data showed that students believed the online experience was less desirable than face to face courses. Now that we have had a near complete semester where most classes were required to be held in the face to face mode, we are hosting conversations with faculty to understand the changes they are now making to their teaching because of the experiences from online instruction. 
    more » « less
  4. This Research Work In Progress Paper examines empirical evidence on the impacts of feedback from an intelligent tutoring software on sketching skill development. Sketching is a vital skill for engineering design, but sketching is only taught limitedly in engineering education. Teaching sketching usually involves one-on-one feedback which limits its application in large classrooms. To meet the demands of feedback for sketching instruction, SketchTivity was developed as an intelligent tutoring software. SketchTivity provides immediate personalized feedback on sketching freehand practice. The current study examines the effectiveness of the feedback of SketchTivity by comparing students practicing with the feedback and without. Students were evaluated on their motivation for practicing sketching, the development of their skills, and their perceptions of the software. This work in progress paper examines preliminary analysis in all three of these areas. 
    more » « less
  5. Freehand sketching is a powerful skill in engineering design [1, 2]. Freehand sketching empowers designers in the early stages of design to express ideas, communicate with stakeholders, and evaluate concepts at a rapid pace. However, teaching sketching in engineering education poses unique challenges for the classroom. Sketching in other domains is often taught in studio-style courses where instructors can provide personalized feedback on technique. This type of feedback is not possible in typical large entry-level engineering graphics courses. To address this problem, Sketchtivity was developed as an intelligent tutoring software to aid instructors in providing feedback on sketching. Using a tablet and smart pen, learners receive real-time personalized feedback on sketching practice. The main goals of this project are to improve sketching instruction methods, understand the educational efficacy of Sketchtivity, and work towards improving the feedback and content of Sketchtivity. 
    more » « less
  6. The culture within engineering colleges and departments has been historically quiet when considering social justice issues. Often the faculty in those departments are less concerned with social issues and are primarily focused on their disciplines and the concrete ways that they can make impacts academically and professionally in their respective arena’s. However, with the social climate of the United States shifting ever more towards a politically charged climate, and current events, particularly the protests against police brutality in recent years, faculty and students are constantly inundated with news of injustices happening in our society. The murder of George Floyd on May 25th 2020 sent shockwaves across the United States and the world. The video captured of his death shared across the globe brought everyone’s attention to the glaringly ugly problem of police brutality, paired with the COVID-19 pandemic, and US election year, the conditions were just right for a social activist movement to grow to a size that no one could ignore. Emmanuel Acho spoke out, motivated by injustices seen in the George Floyd murder, initially with podcasts and then by writing his book “Uncomfortable Converstations with a Black Man” [1]. In his book he touched on various social justice issues such as: racial terminology (i.e., Black or African American), implicit biases, white privilege, cultural appropriation, stereotypes (e.g., the “angry black man”), racial slurs (particularly the n-word), systemic racism, the myth of reverse racism, the criminal justice system, the struggles faced by black families, interracial families, allyship, and anti-racism. Students and faculty at Anonymous University felt compelled to set aside the time to meet and discuss this book in depth through the video conferencing client Zoom. In these meetings diverse facilitators were tasked with bringing the topics discussed by Acho in his book into conversation and pushing attendees of these meetings to consider those topics critically and personally. In an effort to avoid tasking attendees with reading homework to be able to participate in these discussions, the discussed chapter of the audiobook version of Acho’s book was played at the beginning of each meeting. Each audiobook chapter lasted between fifteen and twenty minutes, after which forty to forty-five minutes were left in the hour-long meetings to discuss the content of the chapter in question. Efforts by students and faculty were made to examine how some of the teachings of the book could be implemented into their lives and at Anonymous University. For broader topics, they would relate the content back to their personal lives (e.g., raising their children to be anti-racist and their experiences with racism in American and international cultures). Each meeting was recorded for posterity in the event that those conversations would be used in a paper such as this. Each meeting had at least one facilitator whose main role was to provide discussion prompts based on the chapter and ensure that the meeting environment was safe and inclusive. Naturally, some chapters address topics that are highly personal to some participants, so it was vital that all participants felt comfortable and supported to share their thoughts and experiences. The facilitator would intervene if the conversation veered in an aggressive direction. For example, if a participant starts an argument with another participant in a non-constructive manner, e.g., arguing over the definition of ethnicity, then the facilitator will interrupt, clear the air to bring the group back to a common ground, and then continue the discussion. Otherwise, participants were allowed to steer the direction of the conversation as new avenues of discussion popped up. These meetings were recorded with the goal of returning to these conversations and analyzing the conversations between attendees. Grounded theory will be used to first assess the most prominent themes of discussion between attendees for each meeting [2]. Attendees will be contacted to expressly ask their permission to have their words and thoughts used in this work, and upon agreement that data will begin to be processed. Select attendees will be asked to participate in focus group discussions, which will also be recorded via Zoom. These discussions will focus around the themes pulled from general discussion and will aim to dive deeper into the impact that this experience has had on them as either students or faculty members. A set of questions will be developed as prompts, but conversation is expected to evolve organically as these focus groups interact. These sessions will be scheduled for an hour, and a set of four focus groups with four participants are expected to participate for a total of sixteen total focus group participants. We hope to uncover how this experience changed the lives of the participants and present a model of how conversations such as this can promote diversity, equity, inclusion, and access activities amongst faculty and students outside of formal programs and strategic plans that are implemented at university, college, or departmental levels. 
    more » « less
  7. Abstract Background

    Sketching exists in many disciplines and varies in how it is assessed, making it challenging to define fundamental sketching skills and the characteristics of a high‐quality sketch. For instructors to apply effective strategies for teaching and assessing engineering sketching, a clear summary of the constructs, metrics, and objectives for sketching assessment across engineering education and related disciplines is needed.

    Purpose

    This systematic literature review explores sketching assessment definitions and approaches across engineering education research.

    Methodology/Approach

    We collected 671 papers from five major engineering and education databases at all skill levels for reported sketching constructs and metrics, cognition, and learning contexts. Based on the selection criteria, we eliminated all but 41 papers, on which we performed content analysis.

    Findings/Conclusions

    Engineering, design, and art emerged as three major disciplines in the papers reviewed. We found that sketching assessment most often employs metrics on accuracy, perspective, line quality, annotations, and aesthetics. Most collected studies examined beginners in undergraduate engineering design sketching or drawing ability tests. Cognitive skills included perceiving the sketch subject, creatively sketching ideas, using metacognition to monitor the sketching process, and using sketching for communication.

    Implications

    Sketching assessment varies by engineering discipline and relies on many types of feedback and scoring metrics. Cognitive theory can inform instructional activities as a foundation for sketching skills. There is a need for robust evidence of high‐quality assessment practices in sketching instruction. Assessment experts can apply their knowledge toward improving sketching assessment development, implementation, and validation.

     
    more » « less
  8. Drawing, as a skill, is closely tied to many creative fields and it is a unique practice for every individual. Drawing has been shown to improve cognitive and communicative abilities, such as visual communication, problem-solving skills, students’ academic achievement, awareness of and attention to surrounding details, and sharpened analytical skills. Drawing also stimulates both sides of the brain and improves peripheral skills of writing, 3-D spatial recognition, critical thinking, and brainstorming. People are often exposed to drawing as children, drawing their families, their houses, animals, and, most notably, their imaginative ideas. These skills develop over time naturally to some extent, however, while the base concept of drawing is a basic skill, the mastery of this skill requires extensive practice and it can often be significantly impacted by the self-efficacy of an individual. Sketchtivity is an AI tool developed by Texas A&M University to facilitate the growth of drawing skills and track their performance. Sketching skill development depends in part on students’ self-efficacy associated with their drawing abilities. Gauging the drawing self-efficacy of individuals is critical in understanding the impact that this drawing practice has had with this new novel instrument, especially in contrast to traditional practicing methods. It may also be very useful for other researchers, educators, and technologists. This study reports the development and initial validation of a new 13-item measure that assesses perceived drawing self efficacy. The13 items to measure drawing self efficacy were developed based on Bandura’s guide for constructing Self-Efficacy Scales. The participants in the study consisted of 222 high school students from engineering, art, and pre-calculus classes. Internal consistency of the 13 observed items were found to be very high (Cronbach alpha: 0.943), indicating a high reliability of the scale. Exploratory Factor Analysis was performed to further investigate the variance among the 13 observed items, to find the underlying latent factors that influenced the observed items, and to see if the items needed revision. We found that a three model was the best fit for our data, given fit statistics and model interpretability. The factors are: Factor 1: Self-efficacy with respect to drawing specific objects; Factor 2: Self-efficacy with respect to drawing practically to solve problems, communicating with others, and brainstorming ideas; Factor 3: Self-efficacy with respect to drawing to create, express ideas, and use one’s imagination. An alternative four-factor model is also discussed. The purpose of our study is to inform interventions that increase self-efficacy. We believe that this assessment will be valuable especially for education researchers who implement AI-based tools to measure drawing skills.This initial validity study shows promising results for a new measure of drawing self-efficacy. Further validation with new populations and drawing classes is needed to support its use, and further psychometric testing of item-level performance. In the future, this self-efficacy assessment could be used by teachers and researchers to guide instructional interventions meant to increase drawing self-efficacy. 
    more » « less
  9. This paper describes an evidence based-practice paper to a formative response to the engineering faculty and students’ needs at Anonymous University. Within two weeks, the pandemic forced the vast majority of the 1.5 million faculty and 20 million students nationwide to transition all courses from face-to-face to entirely online. Never in the history of higher education has there been a concerted effort to adapt so quickly and radically, nor have we had the technology to facilitate such a rapid and massive change. At Anonymous University, over 700 engineering educators were racing to transition their courses. Many of those faculty had never experienced online course preparation, much less taught one synchronously or asynchronously. Faculty development centers and technology specialists across the university made a great effort to aid educators in this transition. These educators had questions about the best practices for moving online, how their students were affected, and the best ways to engage their students. However, these faculty’s detailed questions were answerable only by faculty peers’ experience, students’ feedback, and advice from experts in relevant engineering education research-based practices. This paper describes rapid, continuous, and formative feedback provided by the Engineering Education Faculty Group (EEFG) to provide an immediate response for peer faculty guidance during the pandemic, creating a community of practice. The faculty membership spans multiple colleges in the university, including engineering, education, and liberal arts. The EEFG transitioned immediately to weekly meetings focused on the rapidly changing needs of their colleagues. Two surveys were generated rapidly by Hammond et al. to characterize student and faculty concerns and needs in March of 2020 and were distributed through various means and media. Survey 1 and 2 had 3381 and 1506 respondents respectively with most being students, with 113 faculty respondents in survey 1, the focus of this piece of work. The first survey was disseminated as aggregated data to the College of Engineering faculty with suggested modifications to course structures based on these findings. The EEFG continued to meet and collaborate during the remainder of the Spring 2020 semester and has continued through to this day. This group has acted as a hub for teaching innovation in remote online pedagogy and techniques, while also operating as a support structure for members of the group, aiding those members with training in teaching tools, discussion difficult current events, and various challenges they are facing in their professional teaching lives. While the aggregated data gathered from the surveys developed by Hammond et al. was useful beyond measure in the early weeks of the pandemic, little attention at the time was given to the responses of faculty to that survey. The focus of this work has been to characterize faculty perceptions at the beginning of the pandemic and compare those responses between engineering and non-engineering faculty respondents, while also comparing reported perceptions of pre- and post-transition to remote online teaching. Interviews were conducted between 4 members of the EEFG with the goal of characterizing some of the experiences they have had while being members of the group during the time of the pandemic utilizing Grounded theory qualitative analysis. 
    more » « less